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Abstract—The ubiquitous use of smartphones has contributed
to more and more users conducting their online browsing
activities through apps, rather than web browsers. In order to
provide a seamless browsing experience to the users, apps rely
on a variety of HTTP-based APIs and third-party libraries,
and make use of the TLS protocol to secure the underlying
communication. With NIST’s recent announcement of the
first standards for post-quantum algorithms, there is a need
to better understand the constraints and requirements of
TLS usage by Android apps in order to make an informed
decision for migration to the post-quantum world. In this
paper, we performed an analysis of TLS usage by highest-
ranked apps from Google Play Store to assess the resulting
overhead for adoption of post-quantum algorithms. Our results
show that apps set up large numbers of TLS connections with
a median of 94, often to the same hosts. At the same time, many
apps make little use of resumption to reduce the overhead of
the TLS handshake. This will greatly magnify the impact of
the transition to post-quantum cryptography, and we make
recommendations for developers, server operators and the
mobile operating systems to invest in making more use of these
mitigating features or improving their accessibility. Finally,
we briefly discuss how alternative proposals for post-quantum
TLS handshakes might reduce the overhead.

1. Introduction

As the adoption rate of smartphones steadily grew
over the years, users have developed an innate preference
for conducting their online activities, such as emails and
banking, via mobile apps rather than on desktop or mobile
browsers [25, 28]. Much like web applications, Android
apps also make increasing use of many services offered
over the internet, usually through HTTP APIs. The amount
of traffic sent from apps ranges from application content,
such as posts in social networking apps, to metadata such as
usage analytics, logs, and crash reports. Apps often allow
signing in through providers such as Google, Facebook or
Apple, which is generally implemented by including the
vendor’s SDK libraries in the app. Many mobile apps also
include advertising frameworks, which share user profiles
with advertisers and download and show appropriate ads.
Moreover, libraries, SDKs, and frameworks often include
their own analytics on top of what the app developer is using
directly. Any software library may transitively pull in more
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or distinct versions of libraries through dependencies. As a
result, apps have the possibility to start up many components
on launch, which may connect to one or more services over
the time that the app is running. To protect users’ privacy
and security, this data is sent over the network in encrypted
form, using the Transport Layer Security (TLS) protocol.
Naively, a secure connection needs to be set up for each
of these connections, which results in overhead. The TLS
handshake uses ephemeral key exchange and authentication
data to set up the secure channel, and without optimizations,
this involves transmitting the data each time.

Currently, the cryptography commonly used in TLS
is fairly efficient, both in terms of bandwidth and in
computational requirements, so the overhead is manageable.
A typical elliptic-curve-based (ECC) key exchange with
RSA (Rivest–Shamir–Adleman) authentication uses about
1000 bytes of data. However, to protect against attacks
breaking ECC and RSA using quantum algorithms, we
need to transition to post-quantum cryptography, as already
demonstrated by the work of Sikeridis et al. [45]. The US
National Institutes of Standards and Technology (NIST) is
currently standardizing such quantum-secure algorithms for
key exchange and digital signatures [30]. In July 2022,
they selected the first standards for post-quantum key
exchange (Kyber [41]) and digital signatures (Dilithium [27],
Falcon [34] and SPHINCS+ [23]). These algorithms have
much larger bandwidth requirements than ECC or RSA: a
Kyber-based key exchange requires at least 1568 bytes for
its public key and ciphertext, while a Dilithium public key
and signature together take 3732 bytes. As TLS’ public
key infrastructure relies on many signatures, this may result
in over 17 kB of additional handshake data if Dilithium is
used for all of them [50]. Knowing how the TLS protocol is
used by Android apps can inform the discussion about the
standardization of post-quantum TLS or alternative secure
transport protocols by organizations such as the TLS working
group at the Internet Engineering Task Force (IETF).

There exist several prior work that have already made an
attempt at better understanding the implications for the TLS
protocol when faced with migration to the post-quantum
world. Of particular interest is the work by Sikeridis et al. [45]
in which the authors assessed the additional overhead of
post-quantum cryptography in TLS 1.3 and SSH. More
specifically, the authors studied the integration of post-
quantum key encapsulation mechanisms (KEMs) and post-
quantum authentication, and presented an overview of the
protocol performance when both are used concurrently.
Another closely relevant work is that of Tasopoulos et
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al. [47], where the authors evaluated the performance of post-
quantum TLS on resource-constrained embedded systems.
In their empirical analysis, they focused on modifying the ex-
isting TLS 1.3 architecture to incorporate the post-quantum
algorithms being considered by NIST, and evaluated the
execution time, memory and bandwidth requirements. It
should be noted that none of the existing work so far have
studied the consequences of migration to post-quantum TLS
for Android apps.

In this paper, our goal is to address the gap in the current
literature by investigating the use of the TLS protocol and
its associated features by Android apps in order to provide
recommendations for migrating to post-quantum TLS. We
do so by studying the most popular Android apps in the
Google Play Store to establish a minimal baseline of the
TLS connections for most top-ranked apps. We focus on the
Games and general-purpose app categories, and collected
the top 45 Android apps in each category, as of January 2023.
Each app was executed on a real Android device and the
resulting network traffic was collected. We then extracted
relevant TLS features, such as client handshakes, session
duration, and resumptions. These metrics show how app
developers use TLS and if features that reduce its overhead
are actually used. Finally, we estimate the impact of the
upcoming migration to post-quantum algorithms would
have on the overhead induced by how apps use TLS. The
amount of data required for a TLS handshake will increase
by a factor of more than 8; for specific examples of Apps
and Games, this increases the data that is transmitted solely
as TLS handshake overhead from approximately 400 kB to
3 MB. We make the following contributions:

• We implemented a customized scraper to extract
applications from the Google Play Store and built a
pipeline to download and run apps on a real device
in order to capture network traffic.

• Based on our experimental evaluation, we presented
insights into how the TLS protocol is used in practice
and how TLS features are implemented by the top-
ranked apps.

• We provide recommendations for how to improve
TLS configurations on both the client and the server-
side, and prepare for the impact of the migration to
post-quantum TLS.

• To help reproducibility of our results, we make our
dataset of network traffic records for all collected
Android apps and the customized crawler publicly
available1.

The remainder of the paper is organized as follows: in
Section 2, we provide background knowledge on TLS and
how it is implemented in Android apps. We also present an
overview of the related work. We explain our experimental
setup and methodology in Section 3, followed by presentation
of our results in Section 4. We discuss our results and present
recommendations in Section 5, and conclude in Section 6.

1. https://zenodo.org/record/7950522

2. Background & Related Work

2.1. Transport Layer Security

The Transport Layer Security (TLS) protocol, invented as
SSL by browser developer Netscape in 1995 [14], is perhaps
the most-used cryptographic protocol. An ever-increasing
number of websites and other services use TLS to protect
traffic from eavesdroppers on the network. TLS is not just
used for websites, which are using the HTTP protocol; it
is used for many applications, ranging from VPNs [33], to
secure file transfer [16] and email [21, 31]. Even offline,
TLS can be used, for example, to secure networks inside of
cars [51].

Client Server
ClientHello: 𝑔𝑥

ServerHello: 𝑔𝑦

Certificate, CertificateVerify, Finished

Finished

Figure 1. Overview of the TLS 1.3 handshake

TLS allows a client, such as a web browser or Android
app, to connect to a server, such as the one hosting a
website or API service. We give a sketch of the TLS
handshake protocol in Fig. 1. The server is identified by a
certificate, which is a statement of the server’s identity,
signed by a certificate authority. Optionally, TLS also
supports identification of the client.

TLS has seen a lot of development since its initial
version. Many extensions and additional features were
developed, but the principle behind the most common
mode has mainly stayed the same. The latest version of
the protocol is TLS 1.3, which was released in 2018 by
the standardization organization IETF as RFC 8446 [37],
though TLS 1.2 [38] is also still widely used. As it is
not uncommon to connect to the same server many times
over time, resumption mechanisms have been added to
the protocol. These allow a TLS client to resume a prior
connection without exchanging the certificates, which saves
a significant amount of computation and handshake traffic.
We show a sketch of the TLS 1.3 handshake with resumption
in Fig. 2. TLS 1.3 even allows the client to submit early
data while a connection is being resumed, which results in
a 0-round trip (0-RTT) handshake: the request is sent off
before the server has completed the handshake. This further
reduces the overhead. Another improvement in TLS 1.3 is
the use of handshake encryption, which offers additional
privacy to the client and server.

Client Server
session ticket: id, 𝐾𝑝𝑠𝑘

ClientHello: 𝑔𝑥 , session ticket: id

ServerHello: 𝑔𝑦 , ticket ok, Finished

Finished

Figure 2. Overview of TLS 1.3 resumption
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Traditionally, TLS is run on top of the TCP transport
protocol. To get around the TCP SYN/ACK handshake,
which adds head-of-line blocking to connection establish-
ment, the QUIC protocol was developed [24]. QUIC is a
reliable transport protocol, like TCP, but it runs over UDP
and uses TLS 1.3’s handshake protocol to encrypt all traffic.
It also offers more advanced features such as connection
multiplexing and quickly switching underlying connections
between WiFi and mobile networks. Like TLS 1.3, QUIC
offers 0-RTT connection resumption. HTTP/3, the latest
version of the HTTP protocol, runs over QUIC [10].

2.2. TLS in Android

Just as how browser developers have pushed for increased
use of TLS on the web (see, e.g., [40, 49]), both Google
and Apple have increasingly been pushing for increased use
of TLS to secure the traffic that apps send out. Similar to
browsers, most connections are using the HTTP protocol,
this is usually synonymous with using HTTPS (HTTP
over TLS) [36]. Since version 9, Android’s default HTTPS
implementation does not allow unencrypted HTTP traffic
by default (though it can be re-enabled by developers);
on Apple’s iOS version 9.0 and above, HTTP is similarly
disabled by default, and re-enabling it requires justification
in App Store reviews [6].

Performing HTTPS requests is natively supported by
the Android standard library. The documentation shows
that performing an HTTPS request can be done with a
few lines of code [18]. We conjecture that most developers
and libraries likely use this API, which is also confirmed
by the observations made in [32]. There also exist third-
party libraries, such as Block’s OkHTTP [11], which offers
additional functionality like HTTP/2. Google itself also
offers Cronet, which provides Chromium’s network stack
to apps as a networking library and supports HTTP/2,
and HTTP/3 over QUIC [17]. Using these libraries does
require adding external dependencies to apps, and their
implementation might require more work.

2.3. Related work

In this section, we provide a brief overview of the relevant
literature related to the usage and applications of TLS in the
Android ecosystem.

The investigation conducted by Razaghpanah et al. [35]
was one of the firsts to provide insightful observations on
how TLS is used in Android apps. In their holistic and
large-scale study, the authors crowd-sourced network traffic
by leveraging the Lumen Privacy Monitor, a free Android
app which has the capability of collecting data from normal
user-app interactions, map network flows to apps and collect
data related to TLS handshake. Of particular interest to our
work, the authors uncovered diverse ways in which apps use
default and third-party TLS libraries, including ones that
have security vulnerabilities and weaknesses, such as weak
cipher suites, in their implementations.

A similar observation was also made by Kotzias et
al. [26], whereby the authors conducted a large-scale,
longitudinal study to examine the evolution of the TLS
ecosystem during the period of 2012-2018. In one of their
main findings, they reported that while browsers are quick
to adopt new algorithms (in response to known TLS-based

attacks), they are, however, slow to drop support for older,
insecure ones. More recently, extending the work of Holz
et al. [22], Birghan and van der Merwe [9] presented
further insights into the deployment of TLS 1.3 in Firefox.
Leveraging telemetry data provided by Mozilla, they reported
on the TLS 1.3 adoption rate, cipher suite usage, 0-RTT
usage and the uptake of post-handshake authentication
mechanism. Their findings further consolidate the main
motivation behind the goal of our work, which is that of,
preparing the TLS 1.3 landscape for migration to post-
quantum TLS.

While much can be learned from understanding how
TLS is adopted in order to mitigate attacks, there are also
concerns surrounding provision of quality of service by
network administrators. Given the diverse app ecosystem
of the Android landscape, it is challenging to properly
administer adequate bandwidth since the traffic generated by
the plethora of apps is largely diverse. The work of Sengupta
et al. [44] highlight the hurdles faced by app developers
when implementing TLS and configurating complicated end-
to-end architecture with bare minimum domain expertise,
thus resulting in bloated apps with a wide array of cipher
suites, key-sizes, and certificate management styles. Such
insights provide further crucial information to help decide
how to migrate Android apps to post-quantum TLS.

Along the same vein, in 2012, Fahl et al. [15] proposed
MalloDroid to help identify and mitigate vulnerable TLS
code which could lead to man-in-the-middle attacks in
Android apps. More importantly, their work also focused on
the usability aspect related to users’ ability to understand
the meaning of warning messages and what are the safest
behaviors to adopt. Incidentally, their online survey revealed
that users rarely know what is the best and safest recourse
to take when faced with security warning messages related
to insecure connections. In their follow-up study published
in 2021 [32], the authors performed an evaluation of the
then-existing measures provided by Google for performing
TLS certificate validation in Android apps. The results of
the study confirmed that developers still struggle to perform
certificate validation, despite the additional documentation
provided by Google. This shows that there is no guarantee
that official developer guidelines are being properly adhered
to by app implementers in real-life.

3. Method

In this section, we first describe and justify the collected
data. Then we present the experimental setup with technical
details.

3.1. Dataset collection

The aim of our study is to investigate how TLS is used
in a representative collection of applications and for this
reason, we focus primarily on the most popular Android
apps. We opted to use the top-ranked applications from
Google Play, which is the largest app marketplace for
the Android operating system. Google Play [19] offers
a wide range of applications, divided into five primary
categories, namely Games, Apps, Movies & TV, Books,
and Kids. The categories Games and Apps provide the Top
charts sub-categories, which rank 45 applications heavily
influenced by popularity [5]. In the following, we refer to
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Figure 3. Experiment pipeline

applications from the App category as Apps and from
the Game category as Games. When we use the term
"applications" or "apps" without specifying a category,
we are referring to applications from both categories. We
collected free applications from both Top charts rankings
on 23 January 2023, resulting in a total of 90 applications,
with downloads ranging from 100K+ to 5B+, with a median
of 10M+. Given that the rankings vary from one country to
another and there is no global top ranking, we limited our
selection to the German market. The selected applications
are listed in Table 6 for Apps and Table 7 for Games (both in
Appendix A), including the app IDs and names as listed in
the Google Play Store. We executed the apps on an Android
phone with Android 11 and recorded the TLS traffic between
January 30th and February 1st, except for the Game Stumble
Guys because it required an update and was re-downloaded
on February 1st. We captured the traffic using Tshark [48]
and stored it in the pcap [20] package capture file format.
When parsing the pcaps, we extracted the following features:

• Number of TLS client handshakes
• Number of TLS resumptions
• Information about each TLS connection

– Protocol (TLS/QUIC)
– TLS version
– Traffic in MB
– Session time
– Destination host IP address and server name
– Resumption attempt
– Resumption acceptance

3.2. Experiment setup

Our experiment pipeline involved several steps, which
are shown in Figure 3.

In step 1, we retrieved the app IDs which are unique
identifiers assigned by Google Play to manage and distribute
the applications. When accessing the Google Play website,
it does not show all the applications, but gradually loads
them while scrolling. For this reason we implemented a
Google Play Scraper using Selenium [12]. While the scraper
is able to get to the app IDs of all main categories and
subcategories by scrolling through the entire page and all
subcategories, for our experiment, we only collected the app
IDs of the Top charts subcategories, as described earlier. We
sent the app IDs to the Raccoon APK Downloader [1] in
step 2, in order to download the apps in step 3. Raccoon
is able to download the applications directly from Google
Play to a laptop. In step 4, we installed the apps on the
Nokia G11 Android phone connected to a laptop via cable
to set up an Android Debug Bridge [4] and via a hotspot to
intercept the traffic (step 6). In step 5, we interacted with
each application for five minutes, attempting to simulate
normal human interaction. We repeated steps 4, 5 and 6
for each app and deleted the previous app before installing

a new one. We started intercepting the traffic immediately
after running the application and stopped before uninstalling
it, thus creating a separate pcap file for each application.
We selected the recording duration of 5 minutes based on
a pre-experiment where we recorded the traffic of 10 apps,
which showed no significant changes in their TLS traffic
after 5 minutes.

One limitation of our experimental setup is that the traffic
is not decrypted, which does not allow us to examine the
exchanged data content. One problem that arises from this is
that we cannot distinguish the traffic of the target app from
the background traffic generated by the Android operating
system. Although the background noise is not directly related
to the tested applications, it may still be recorded in our
measurements. To verify this, we conducted a 60-minute
recording of traffic while interacting with the native Android
calculator application, during which we observed a total
of 44 handshakes. On average, we noted 4 handshakes in
each 5-minute phase, with a median of 3. The 5-minute
phase with the lowest number of handshakes recorded was 0,
while the maximum number of TLS handshakes sent in a 5-
minute phase was 12. Overall, we believe that the number of
handshakes recorded is relatively low when compared to the
amount typically generated by apps found on Google Play.
Therefore, we are confident that the impact of background
traffic on our results is negligible.

We have automated the processing of the captured traffic
using a combination of Tshark and Python scripts. Tshark
is used to filter out all packets containing TLS fragments,
and to convert the pcap file to json. In Python, we loaded
this json file and used the Tshark-provided identifiers of
unique TCP (for TLS) and UDP (for QUIC) streams to
reconstruct individual packets into sessions. Finally, we
dissected these sessions, e.g. by extracting the server name
from the ClientHello message or checking the ClientHello
and ServerHello TLS messages for extensions that are used
in session resumption.

4. Results

During our experiment, we recorded various statistics
and obtained a number of interesting results. In this section
we present our findings under multiple aspects.

The implementation of TLS can impact application
performance and have implications for network traffic
utilization. To assess the current state of TLS usage in
popular Android apps and evaluate their adherence to best
practices, we have gathered statistics affecting performance
which are discussed in the following.

During a TLS handshake, the client and server exchange
multiple messages, which adds additional Round Trip Time
(RTT) overhead. The easiest way to reduce latency would
be to reduce the number of TLS connections. However,
this measure would require to decide which connections are
unimportant enough to be removed and goes beyond the TLS
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implementation. If the client sends multiple handshakes to
the same servers, TLS session resumptions can reduce the
overhead. These allow the client and server to re-establish
a connection without performing a full TLS handshake.
Compared to TLS 1.2, TLS 1.3 reduces the number of round
trips by combining the handshake and session resumption
into a single round trip. In addition, TLS 1.3 introduces the
zero round trip mode, which allows the client to send data
immediately after the first handshake. The QUIC protocol
which uses the TLS 1.3 protocol combines the connection
setup and encryption handshake into a single step. This
allows to reduce the number of round trips required to
establish a connection even further. Opening TLS sessions
for a longer period of time without terminating them could
also reduce the number of TLS handshakes, which is why
we measure the duration of each session. Finally, it is
important to avoid redundant traffic to reduce the impact
on network consumption. Although encryption prevents us
from viewing the exact data being transmitted, the volume
of data sent during each TLS session provides valuable
insights into data consumption.

Table 1 highlights the differences between applications
from the Apps category and those from the Game category.
As evident from the table, Games exhibit higher average
activity in almost all aspects. The lower activity of Apps, on
the other hand, can be attributed to their commercial nature,
such as shopping apps, companion apps, or banking apps.
These Apps are designed to serve a specific purpose and do
not require constant data transmission. In contrast, Games
generate revenue through advertising and data collection,
leading to a higher volume of data being sent to various
servers. This could explain the observed difference in activity
levels between the two categories. In the Tables 2 and 3,

Table 1. Comparison of Apps and Games

Apps Games All

Handshakes Mean 86 203 144
Median 57 135 94

Resumptions Mean 18 54 36
Median 11 20 14

Servers Mean 32 58 45
Median 25 60 37

Traffic in MB Mean 9.5 17.7 13.6
Median 3.2 9 6.2

Session Time in secs Mean 4.5 3.7 4.1
Median 1.1 2.3 1.8

TLS 1.3 usage in % Mean 73 58 66
Median 77 67 69

QUIC handshakes Mean 10 11 11
Median 10 8 9

six noteworthy applications from each of the respective
categories are listed together with their performance-related
statistics. The Resumptions column shows a subset of all
handshakes from the Handshakes column. The Servers
column indicates the number of unique server names.
Tables 6 and 7 in Appendix A provide a full description of
all the applications and their respective statistics.
Handshakes & Resumptions. With 917 handshakes, the
game Candy Crush Saga is by far the most active in this
regard. However, it connects to the same server most of
the time and uses resumptions more consistently than any
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Figure 4. Cumulative distribution of TLS 1.3 usage

other application. A similar behavior regarding the ratio
of resumptions to handshakes is only shown by the Game
Farm Heroes Saga, published by the same company as
Candy Crush (King.com). All other applications make less
use of resumptions. Interestingly, the app Haircut prank,
air horn & fart, which sends the most handshakes of all
applications in the Apps category, could also be classified
as Games in Google Play due to its functionality.
TLS 1.3. We observe that all applications use either TLS
1.2 or TLS 1.3. Figure 4 shows the cumulative distribution
of TLS 1.3 usage for Apps and Games. As can also be
seen from Table 1, Apps rely more on TLS 1.3 than Games.
In our experiment we found that 13 Apps use TLS 1.3
in more than 90% of their handshakes, whereas only 2
applications from Games do so. However, there are also
negative outliers in both categories. For example, the App
Klarna | Shop now. Pay later only uses TLS 1.3 in
11% of 56 handshakes. Among the Games, Woodoku -
Block Puzzle Games is the application that uses the least
TLS 1.3 handshakes, with only 13%.
QUIC. The QUIC protocol is used by Apps and Games to
an equal extent, with the most frequently accessed servers
being provided by various Google and Facebook services.
For the most part, however, QUIC is not used extensively.
For instance, the App Joyn | deine Streaming App,
which boasts the highest number of QUIC handshakes in its
category, only sends 34 QUIC handshakes out of a total of
317 overall handshakes. Similarly, Lighter Simulation,
the Game that uses QUIC the most, only sends 39 out of
290 handshakes using QUIC.
Data Volume. Most data is exchanged by Stormshot:
Isle of Adventure and Instagram for the Apps cate-
gory. Instagram’s data usage of 124.7 MB can be largely
explained by the high volume of video content being
streamed through the App. The second and third places with
the most data traffic in the Apps category are also occupied
by the video streaming Apps TikTok and Snapchat. The
reason behind the even greater amount of data exchanged
by Stormshot remains unclear to us. We speculate that the
application is making use of various third-party libraries
and analytics services, which would be a probable cause of
the high traffic load.
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Table 2. Notable applications from Apps category with their statistics

App Title
App ID Handshakes Resumptions Servers TLS 1.3 Time (s) Traffic (MB) QUIC handshakes

Haircut prank, air horn & fart
com.pranksounds.appglobaltd 430 110 100 77% 2.2 27.0 18
Instagram
com.instagram.android 51 7 23 94% 0.7 124.7 16
Klarna | Shop now. Pay later.
com.myklarnamobile 56 5 26 11% 1.2 2.3 1
Dezor
net.dezor.browser 21 4 14 95% 32.7 0.2 0
Joyn | deine Streaming App
de.prosiebensat1digital.seventv 317 71 110 69% 1.1 20.0 34
S-pushTAN
com.starfinanz.mobile.android.pushtan 4 3 3 100% 0.4 0.0 0

Table 3. Notable applications from Games category with their statistics

App Title
App ID Handshakes Resumptions Servers TLS 1.3 Time (s) Traffic (MB) QUIC handshakes

Candy Crush Saga
com.king.candycrushsaga 917 900 9 93% 0.3 5.3 0
Stormshot: Isle of Adventure
com.sivona.stormshot.e 41 7 21 37% 9.1 182.1 0
Woodoku - Block Puzzle Games
com.tripledot.woodoku 171 24 79 13% 3.1 3.3 1
Royal Match
com.dreamgames.royalmatch 23 3 16 30% 29.3 7.0 1
Lighter Simulation
com.smoke.lighter.simulator 290 33 83 90% 3.0 24.4 39
Lords Mobile: Kingdom Wars
com.igg.android.lordsmobile 9 2 8 89% 0.9 47.3 2

Session Duration. In terms of session duration, there are no
major differences between the two categories. While most
applications keep connection times very short, some have
significant outliers. In particular, in the Apps category, three
applications maintain their connection for a median of more
than 30 seconds, which is a lot considering that the overall
median for the app category is only 1.1 seconds. Games
show less variance in this regard.
Applications with Little Activity. Several apps have very
limited activity in terms of handshakes. This is often due to
special requirements that prevented us from fully interacting
with them. For example, messaging Apps like WhatsApp
Messenger and Telegram require users to provide a phone
number, but we were unable to do so as our test phone did
not have a SIM card. Similarly, Samsung Smart Switch
Mobile is only compatible with Samsung phones, which
limits its usage to a specific set of devices. S-pushTAN,
which has the lowest amount of handshakes, is a banking
App that requires users to have a banking account in order
to use it. We also encountered technical difficulties with
Lords Mobile: Kingdom Wars, as the Game failed to
launch properly and got stuck on a black loading screen.
Despite only sending 9 handshakes, the Game managed to
transfer a surprisingly large amount of data, i.e. 47.3 MB.
Handshakes over Time. Figures 5 (a)–(f) show timing
diagrams depicting the number of client hello messages,
resumptions and repeatedly accessed servers over the course
of the interaction with the apps. The majority of apps show
their main activity at the beginning such as Amazon 5(c),
Disney+ 5(e) and Farm Heroes Saga 5(f) or after an
initial user interaction such as a registration in Roblox 5(b).
Candy Crush Saga 5(d) shows a very untypical behavior,
as it sends a vast number of handshakes in the first approx.
100 seconds and then stops abruptly. The figures represent
different behavioral patterns that lead to different overhead
costs. The App OTTO – Shopping & Möbel 5(a) and the
Game Roblox exhibit the most inefficient behaviour by send-

ing a high number of handshakes frequently to previously
accessed servers, almost without using resumptions. The App
Amazon initiates fewer handshakes and uses resumptions
for about half of the repeatedly accessed servers. The
Game Candy Crush Saga resumes almost all connections,
however the amount of handshakes seems excessive. Farm
Heroes Saga also resumes most of the handshakes but
makes significantly less connections than Candy Crush
Saga. Disney+ seems to be the most efficient application in
this regard, as it generates the least number of handshakes
and consistently resumes connections to servers that are
repeatedly accessed.

5. Discussion

In this section, we will summarize and reflect on our
results, before we show the large impact migrating to post-
quantum secure algorithms would have on the overhead in
TLS handshakes. We also suggest some general approaches
that can help improve the performance and reduce the
overhead of performing full TLS handshakes for every
HTTPS request, which mitigate the impact of the post-
quantum transition, but may also improve the performance
and data usage of apps today. Finally, we will briefly discuss
alternative handshake protocols that have been proposed for
post-quantum TLS, and which may be especially applicable
to mobile applications.

5.1. How apps use TLS

In our analysis, we have discovered that the adoption of
new TLS standards among Android applications has been
slow. Despite the introduction of TLS 1.3 as the new standard
in 2018, and being supported since Android 10 (2019), it is
only used in 66 % of connections. This is only slightly more
than the amount of TLS 1.3 connections in web browsers in
November 2021 [9]. We also see that, on median, only 31%

6



(a) OTTO – Shopping & Möbel (App)

0 50 100 150 200 250 300
Seconds

0

25

50

75

100

125

150
Cl

ie
nt

 H
el

lo
s

Client Hellos
Resumptions
Same Servers

(b) Roblox (Game)

0 50 100 150 200 250 300
Seconds

0

100

200

300

400

Cl
ie

nt
 H

el
lo

s

(c) Amazon (App)

0 50 100 150 200 250 300
Seconds

0

20

40

60

80

100

120

140

Cl
ie

nt
 H

el
lo

s

(d) Candy Crush Saga (Game)

0 50 100 150 200 250 300
Seconds

0

200

400

600

800

Cl
ie

nt
 H

el
lo

s

(e) Disney+ (App)

0 50 100 150 200 250 300
Seconds

0

10

20

30

40

50

Cl
ie

nt
 H

el
lo

s

(f) Farm Heroes Saga (Game)

0 50 100 150 200 250 300
Seconds

0

20

40

60

80

100

Cl
ie

nt
 H

el
lo

s

Figure 5. Timing diagrams for interesting apps showing handshakes, resumptions and repeatedly accessed servers

of connections to the same host use resumptions and that
the median session length is only 1.1 seconds for Apps and
2.3 seconds for Games.

The use of the more advanced features such as TLS
session resumption or use of the QUIC protocol remains
low and is primarily limited to servers owned by major
corporations like Google and Facebook. This may be in part
due to popular web servers, such as NGINX, not yet natively
supporting QUIC or HTTP/3. Nevertheless, Games such
as Candy Crush Saga or Apps like Joyn do make use of
these features. In the case of Candy Crush Saga, the 900
resumed handshakes would each have included two RSA-
2048-based certificates and a handshake signature, adding

up to 1.13 MiB, roughly 20 %, of additional data. These
savings clearly illustrate that, even though these features
may not be used often, their development and the effort
spent on implementing them by the IETF and TLS library
developers has been worthwhile.

Still, the main theme in our results has been the high
number of handshakes, which appears to be excessive in some
cases. Our findings show that some Games, in particular,
generate a significant number of connections, with only a
fraction of them being resumed. This suggests that the focus
of developers is largely not on network optimization and that
there is still room for improvement in optimizing connection
handling in some applications. In Section 5.3, we will offer
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some suggestions to both app developers and the Android
ecosystem to improve this situation.

5.2. The impact of post-quantum cryptography

The large number of non-resumed connections that
many apps set up result in many full key exchanges and
transmissions of full certificate chains. If this is not mitigated
(as we will discuss below), the transition to post-quantum
cryptography and large increase in connection establishment
overhead will greatly inflate the data used by mobile
applications.

We can estimate how large this difference in size
may be for a number of the apps that we sampled. We
base our calculations on the assumption that every non-
resumed handshake currently uses ephemeral key exchange,
authenticates using a server certificate, and includes an
intermediate certificate to authenticate that certificate. We
assume that X25519 [8] is used for the key exchange (which
takes 64 bytes) and RSA-2048 [39] is used as signature
algorithm in all certificates, the public keys and signatures
of which add up to 1376 bytes of data2. This means we have
two public keys for ephemeral key exchange, three signatures
(one handshake signature and two signatures in certificates),
and one signature algorithm public key in each certificate. If
we replace X25519 by the post-quantum key encapsulation
mechanism (KEM) Kyber-512 [41] and RSA-2048 by post-
quantum signature scheme Dilithium2 [27], the two primary
schemes that have been selected for standardization by NIST
in 2022 [2], we instead require 1586 bytes for key exchange
and 9984 bytes for authentication; a total of over 11 kilobyte.
We show the theoretical impact on handshake sizes of using
Kyber-512 and Dilithium2 for some of the apps that we have
sampled in Table 4.

As observed by Sikideris et al. [45, 46], when the
size of the server certificate message exceeds the initial
congestion window (initcwnd) size, it will also result in
additional round-trips before the individual handshake can
be completed. This would be the case if the recommended3,
more conservative Dilithium3 parameter set would be used:
this would require 13 783 bytes just for authentication.
Table 4. Estimates of data in kB used for asymmetric cryptography in
non-resumed handshakes by apps when using pre-quantum or post-quantum
cryptographic primitives

App # Full
HS

Key
exchange Data Auth. Data Total crypto

overhead

Klarna 51 X25519 3.3 RSA-2048 66.9 70.2
Kyber-512 80.0 Dilithium2 504.1 584.1

Lighter
Simulation 257 X25519 16.4 RSA-2048 337.2 353.6

Kyber-512 403.0 Dilithium2 2540.2 2943.2

Haircut prank,
air horn & fart 320 X25519 20.5 RSA-2048 419.8 440.3

Kyber-512 501.8 Dilithium2 3162.9 3664.6

5.3. Reducing the overhead of (post-quantum) TLS
handshakes

We see that many apps perform a very large amount
of TLS handshakes, even though they often connect to

2. X25519 is used in the vast majority of the recorded handshakes.
3. The Dilithium team writes on their website: “We recommend using

the Dilithium3 parameter set, which—according to a very conservative
analysis—achieves more than 128 bits of security against all known classical
and quantum attacks” [13].

the same hostnames. This suggests that although TLS or
protocols like QUIC offer resumption mechanisms, and
application-layer protocols like HTTP allow connection
multiplexing, these features are only used by very few
apps. Evidently, these features are either not well-known
to developers, or not very easy to use compared to setting
up new connections. This could be improved by offering
developers better documentation and making it easier to re-
use connections or perform multiple requests over the same
connection. Android’s standard HTTPS library could for
example be set up to use HTTP/3 over QUIC by default, and
use resumption whenever possible. Alternatively, it could be
made possible to intercept any calls to the standard library
HTTPS stack so that dependencies in apps can be uplifted
to HTTPS implementation with more features or better
connection coalescing and caching. Finally, Android could
offer metrics or profilers to developers on HTTP connection
usage and encourage their use for improving application
performance, so that developers have a better understanding
of what their apps are doing and how they connect to the
internet. Such utilities already are a core component of web
browsers’ development tools [7, 29].

The operators of the API services that apps call over
HTTPS also need to ensure that their endpoints support
modern transport protocols, such as TLS 1.3, HTTP/2,
QUIC, or HTTP/3. TLS session resumption also requires
special attention: if a hostname is served by more than one
TLS server, the servers need to share a session database or
a symmetric session cookie encryption key. These session
databases or cookie keys are very sensitive: if obtained by
an adversary they could be used to perform a machine-in-
the-middle attack.

5.4. Further ways of mitigating the impact of post-
quantum cryptography

The most important way to reduce the impact of post-
quantum cryptography on the performance of mobile apps
and the amount of data that they use will be to reduce the
number of TLS handshakes and use session resumption as
much as possible. However, session resumption does have
considerable deployment concerns: it is not always possible
to share a session database between servers, and setting up
different servers with a shared symmetric session cookie
encryption key may have security implications. Finally,
although connection multiplexing or session resumption are
arguably the best way to make an impact, they can only affect
the second request that an app makes: the first request still
needs to complete the full handshake to set up the encrypted
channel and/or obtain a session ticket to be used in later
resumptions.

The biggest contributor to the size of the post-quantum
TLS handshakes are the post-quantum signature schemes: a
Dilithium2 public key and signature are much larger than
a Kyber-512 public key and ciphertext. This difference can
be exploited by using KEMTLS, proposed by Schwabe
et al. at ACM CCS 2020 [43]. Using KEMTLS, which
authenticates using a KEM key exchange instead of a
signature scheme, would allow to replace, for example,
the Dilithium2 public key and signature (3732 bytes) used
for handshake authentication in post-quantum TLS by a
Kyber-512 public key and ciphertext (1568 bytes): this leads
to a 2164 byte reduction in handshake size. But for mobile
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apps, which we have seen connect many times to only a
handful of hosts that have often been hard-coded in the
application, we can also consider another approach.

KEMTLS-PDK, a variant of KEMTLS proposed by
Schwabe et al. at ESORICS 2021 [42], can be used if the
client already has a long-term public key belonging to the
server. This can, for example, be used in mobile applications,
which also benefit from having reliable update mechanisms
through the app stores, by bundling the server’s public key
in the application. Note that public keys are much easier
to manage than the symmetric keys required for TLS’ PSK
mechanism, and KEMTLS-PDK servers do not need to
maintain or synchronize a session database. KEMTLS-PDK
can greatly reduce the handshake size: it allows to omit the
certificates from the (KEM)TLS handshake altogether. We
compare post-quantum TLS, KEMTLS and KEMTLS-PDK
in Table 5.

At the cost of storing the server’s long-term KEM public
key in the application, we are able to authenticate the server
using only one ciphertext of traffic. When using Kyber-512,
this is 768 bytes. But in KEMTLS-PDK we can also use the
very conservative Classic McEliece [3] scheme, which has
very large public keys but very small ciphertexts. Classic
McEliece’s public keys are too large for transmission as
a mceliece348864 public key is 261 120 bytes. However,
when used in KEMTLS-PDK, only the ciphertext needs to be
transmitted. This allows us to further reduce the handshake
size, to almost the same size as TLS 1.3’s psk_dhe pre-
shared-key handshake. At the same time, KEMTLS-PDK
avoids having to set up session databases or session cookie
encryption keys on the server side.

Table 5. Sizes of alternative TLS handshake proposals when instantiated
with post-quantum cryptography

Size of public key crypto (bytes)Handshake Algorithms KEX Auth. Sum

TLS Kyber-512 &
Dilithium2 1568 9884 11 452

KEMTLS Kyber-512 &
Dilithium2 1568 7720 9288

KEMTLS-PDK Kyber-512 1568 768 2336

KEMTLS-PDK Kyber-512 &
McEliece348864 1568 96 1664

6. Conclusion

We presented a first investigation of the adoption of
post-quantum TLS for Android apps. We studied the top
45 highest-ranked applications in the Games and Apps
categories from the Google Play Store. Leveraging the
network traffic that was collected after executing the
applications on a real Android device, we extracted a variety
of TLS features which we then used to assess the expected
overhead of migrating to post-quantum TLS for Android
apps. Our results showed that Apps and Games set up large
numbers of TLS connections, often to the same hosts, and
many applications make little use of resumption to reduce
the overhead of the TLS handshake. We argue that this
will greatly magnify the impact of the transition to post-
quantum cryptography, and recommend that developers,
server operators and the mobile operating systems invest in
making more use of these mitigating features or improving
their accessibility. Finally, we briefly discussed how the

KEMTLS and KEMTLS-PDK proposals for post-quantum
TLS handshakes might reduce the overhead.

Future work will focus on conducting a deep-dive into
the applications themselves in order to better understand the
origin of the TLS connections related to advertising libraries,
analytics and log reporting. Finally, instead of probing apps
in a laboratory setting, it would be interesting to replicate
the large-scale study by Birghan and Van der Merwe [9]
on real-world TLS usage by Firefox users, in the context of
mobile devices in order to collect a larger set of real-world
telemetry data.
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Table 6. All tested applications from Apps category with their statistics

App Title
App ID Handshakes Resumptions Servers TLS 1.3 Time (s) Traffic (MB) QUIC handshakes

QRScanner - Super QR Code Tool
app.android.qrscanner 97 13 27 93% 0.4 2.2 28
Amazon Prime Video
com.amazon.avod.thirdpartyclient 124 11 72 50% 0.3 2.8 11
Amazon Shopping
com.amazon.mShop.android.shopping 137 47 46 39% 0.8 6.4 5
BeReal. Your friends for real.
com.bereal.ft 15 1 8 60% 24.3 0.5 2
kaufDA - Leaflets & Flyer
com.bonial.kaufda 65 17 19 42% 19.1 12.4 2
Booking.com: Hotels and more
com.booking 54 5 32 83% 0.2 1.1 9
Blood Pressure
com.bpfit.bloodpressure.health 91 15 40 86% 0.3 1.8 27
Disney+
com.disney.disneyplus 56 29 23 48% 0.2 0.8 2
Duolingo: language lessons
com.duolingo 77 12 26 57% 0.3 18.4 13
eBay Kleinanzeigen Marketplace
com.ebay.kleinanzeigen 205 44 64 78% 4.8 7.7 17
Fasto VPN
com.fretopvp.org 40 9 20 78% 3.5 1.2 9
QR & Barcode Scanner
com.gamma.scan 27 2 19 96% 31.8 0.8 3
Google Translate
com.google.android.apps.translate 47 14 23 66% 0.2 1.0 9
Hook VPN - Fast & Secure VPN
com.hookvpn.vpn 57 11 28 89% 2.5 1.2 11
Instagram
com.instagram.android 51 7 23 94% 0.7 124.7 16
Kaufland - Shopping & Offers
com.kaufland.Kaufland 105 28 36 28% 0.4 6.8 11
CapCut - Video Editor
com.lemon.lvoverseas 41 10 23 95% 11.8 21.1 0
Lidl Plus
com.lidl.eci.lidlplus 57 14 25 63% 1.6 9.4 14
AppLock : Lock app & Pin lock
com.lutech.applock 66 16 25 92% 6.6 3.6 17
Klarna | Shop now. Pay later.
com.myklarnamobile 56 5 26 11% 1.2 2.3 1
Netflix
com.netflix.mediaclient 59 28 25 63% 2.4 1.6 12
PayPal - Send, Shop, Manage
com.paypal.android.p2pmobile 51 9 21 75% 0.3 1.1 10
Haircut prank, air horn & fart
com.pranksounds.appglobaltd 430 110 100 77% 2.2 27.0 18
Samsung Smart Switch Mobile
com.sec.android.easyMover 8 2 5 75% 0.5 0.1 0
Shenzo VPN - Private & Safe
com.shenzo.vpn.free 78 10 20 94% 1.4 6.1 4
Snapchat
com.snapchat.android 52 10 21 98% 30.0 41.2 12
Spotify: Music, Podcasts, Lit
com.spotify.music 37 8 24 68% 1.8 3.6 7
S-pushTAN
com.starfinanz.mobile.android.pushtan 4 3 3 100% 0.4 0.0 0
QR & Barcode Reader
com.teacapps.barcodescanner 33 6 15 85% 3.7 0.8 10
Netto-App
com.valuephone.vpnetto 108 12 41 69% 0.3 3.2 21
Voilà AI Artist Cartoon Avatar
com.wemagineai.voila 85 21 38 94% 3.8 7.4 6
WhatsApp Messenger
com.whatsapp 9 2 5 100% 0.4 0.2 0
TikTok
com.zhiliaoapp.musically 177 30 81 80% 2.3 56.2 30
SHEIN-Fashion Shopping Online
com.zzkko 57 6 32 84% 0.9 3.6 3
OTTO – Shopping & Möbel
de.cellular.ottohybrid 163 18 37 64% 5.9 7.2 16
CHECK24 Vergleiche
de.check24.check24 206 40 67 67% 1.5 5.1 12
Mein dm
de.dm.meindm.android 104 7 42 90% 0.3 5.3 17
ElsterSecure
de.elster.elstersecure.app 10 5 4 40% 0.4 0.3 1
McDonald’s Deutschland
de.mcdonalds.mcdonaldsinfoapp 185 39 36 65% 2.0 3.5 12
Joyn | deine Streaming App
de.prosiebensat1digital.seventv 317 71 110 69% 1.1 20.0 34
REWE - Online Supermarkt
de.rewe.app.mobile 57 14 29 37% 1.4 2.3 4
Zalando – online fashion store
de.zalando.mobile 48 7 26 96% 0.2 4.1 4
Dezor
net.dezor.browser 21 4 14 95% 32.7 0.2 0
File Miner
net.fileminer.android 68 16 17 85% 1.7 1.6 20
Telegram
org.telegram.messenger 16 2 10 56% 0.2 0.2 3
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Table 7. All tested applications from Games category with their statistics

App Title
App ID Handshakes Resumptions Servers TLS 1.3 Time (s) Traffic (MB) QUIC handshakes

Tall Man Run
com.VectorUpGames.TallManRun 427 128 86 56% 1.6 7.7 21
Snake.io - Fun Snake .io Games
com.amelosinteractive.snake 136 21 63 71% 1.4 11.8 10
Magic Princess: Dress Up Games
com.anime.magic.princess.doll.avatar.dressup.games 223 47 60 50% 6.3 10.3 24
Block Blast Adventure Master
com.block.juggle 201 59 66 35% 2.3 6.3 17
Darts Club: PvP Multiplayer
com.boombitgames.Dartsy 83 16 46 37% 3.3 2.2 8
Ragdoll Playground
com.cdtg.ragdoll.playground 120 8 59 92% 2.3 13.0 5
Chess - Play and Learn
com.chess 118 17 63 34% 1.6 1.7 11
Block Crazy Robo World
com.crazy.block.robo.monster.cliffs.craft 135 20 54 77% 3.0 3.3 18
Craft Skyland Loki Pro
com.crazy.rainbow.building.pixelart.mini.pro.craft 75 3 37 87% 8.1 7.4 7
CubeCraft
com.cww.cubecraft 134 9 67 84% 1.4 8.0 9
Royal Match
com.dreamgames.royalmatch 23 3 16 30% 29.3 7.0 1
FIFA Soccer
com.ea.gp.fifamobile 139 16 58 55% 2.9 22.5 2
Frozen City
com.fct.global 103 14 56 17% 1.3 4.6 3
Mahjong Club - Solitaire Game
com.gamovation.mahjongclub 108 21 47 78% 2.4 3.3 22
Lords Mobile: Kingdom Wars
com.igg.android.lordsmobile 9 2 8 89% 0.9 47.3 2
Draw Action: freestyle fight
com.kayac.DrawFight 395 102 80 88% 2.5 21.3 26
Gear Clicker
com.kb.gearclicker 651 122 111 74% 2.3 12.1 33
Subway Surfers
com.kiloo.subwaysurf 72 9 38 76% 1.6 1.2 5
Candy Crush Saga
com.king.candycrushsaga 917 900 9 93% 0.3 5.3 0
Farm Heroes Saga
com.king.farmheroessaga 101 86 9 24% 0.1 1.0 0
Stumble Guys
com.kitkagames.fallbuddies 76 7 43 67% 1.8 4.3 4
Parking Jam 3D
com.lszenlamzr.parkingjam 295 75 74 77% 5.5 13.8 23
Makeover Studio: Makeup Games
com.makeovergame.studio 376 111 96 15% 2.2 24.0 12
UNO!™
com.matteljv.uno 90 9 49 81% 0.6 1.7 13
Save the Doge
com.miracle.savethedoge.an 258 35 88 69% 1.9 6.8 20
Ludo Club - Fun Dice Game
com.moonfrog.ludo.club 103 10 50 69% 1.2 4.2 7
Fishdom
com.playrix.fishdomdd.gplay 77 26 30 35% 1.1 6.5 4
Gardenscapes
com.playrix.gardenscapes 47 18 18 45% 13.1 21.5 2
Homescapes
com.playrix.homescapes 39 13 20 49% 7.4 4.2 1
Township
com.playrix.township 32 13 16 53% 8.3 40.8 1
Find the Difference - Spot it
com.puzzle.find.differences 281 52 81 67% 1.0 14.1 21
Attack Hole - Black Hole Games
com.redlinegames.attackhole 369 54 82 75% 3.3 21.3 19
Roblox
com.roblox.client 447 6 63 74% 10.8 12.6 0
Stormshot: Isle of Adventure
com.sivona.stormshot.e 41 7 21 37% 9.1 182.1 0
Lighter Simulation
com.smoke.lighter.simulator 290 33 83 90% 3.0 24.4 39
Snake Run Race 3D Running Game
com.snakeattack.game 475 103 111 36% 2.2 9.2 18
Makeover & Makeup ASMR
com.storm.beauty.makeover 279 76 76 81% 3.7 23.0 21
Makeover salon: Makeup ASMR
com.storm.beauty.makeover.nail 303 38 98 88% 3.9 22.0 38
Dice Dreams
com.superplaystudios.dicedreams 123 11 60 68% 0.8 47.8 8
Primitive Era: 10000 BC
com.tg.ysrgb.gp 28 7 16 50% 3.5 83.9 2
Triple Tile: Match Puzzle Game
com.tripledot.triple.tile.match.pair.game.three.master.object 155 20 77 24% 1.7 6.4 5
Woodoku - Block Puzzle Games
com.tripledot.woodoku 171 24 79 13% 3.1 3.3 1
Mob Control
com.vincentb.MobControl 213 58 78 23% 2.4 9.5 10
Wörter Los! - Kreuzworträtsel
com.wordgame.newcross.android.de 135 16 66 26% 1.4 4.0 4
Magic Tiles 3
com.youmusic.magictiles 269 26 94 65% 2.6 9.0 11
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